University of Information Technology and Communications (UoITC)

جامعة تكنولوجيا المعلومات والاتصالات

First Cycle – Bachelor's degree (B.Sc.) in Bioinformatics بكالوريوس في المعلوماتية الاحيائية

Table of Contents | جدول المحتويات

1. Mission & Vision Statement	بيان المهمة والرؤية
2. Program Specification	مواصفات البرنامج
3. Program (Objectives) Goals	أهداف البرنامج
4. Program Student learning outcomes	مخرجات تعلم الطالب
5. Academic Staff	الهيئة التدريسية
6. Credits, Grading and GPA	الاعتمادات والدرجات والمعدل التراكمي
7. Modules	المواد الدراسية
8. Contact	اتصال

1. Mission & Vision Statement

Vision Statement

Our vision is to produce highly skilled professionals who are at the forefront of innovation and drive positive change in society through the applications of bioinformatics.

Mission Statement

Our mission is to contribute to the field of bioinformatics by providing extensive education and conducting pioneering research. We are committed to empowering students with the necessary knowledge and abilities to effectively analyze and understand intricate biological and medical data. By promoting innovation and cultivating critical thinking, we strive to make significant advancements in the field.

2. Program Specification

Programme code:	BSc-BI	ECTS	240
Duration:	4 levels, 8 Semesters	Method of Attendance:	Full Time

Bioinformatics is a multidisciplinary field that combines biology, computer science, mathematics, and statistics to analyze and interpret biological data. It involves the development and application of computational tools and techniques to gather, store, organize, analyze, and visualize biological information. Bioinformatics plays a crucial role in various areas of biological research, including genomics, proteomics, structural biology, evolutionary

biology, and systems biology. By leveraging computational methods and algorithms, bioinformatics enables scientists to make sense of large-scale biological datasets and gain insights into biological processes and phenomena. The program specification entails a comprehensive curriculum designed to equip students with the necessary skills and knowledge in bioinformatics.

This program offers students a comprehensive understanding of bioinformatics, equipping them with a diverse range of knowledge and skills. At the foundational levels, students gain a solid understanding of biology, mathematics, and computer science fundamentals. They develop essential programming skills and are introduced to bioinformatics, providing them with a strong foundation for subsequent levels.

Furthermore, students will be introduced to advanced biology topics that serve as a foundation for genetics and genomic science in subsequent levels. They will actively participate in practical modules focused on enhancing their programming and data analysis skills. Through these modules, they will gain valuable hands-on experience in working with complex biological data. Moreover, a wide range of modules will be offered, aligning with the core objective of bioinformatics to explore and utilize biological data through the application of bioinformatics tools and software.

As they progress, students learn more about advanced biology subjects like genetics, genomics, and molecular biology. They also acquire practical skills in programming, data analysis, and working with complex biological data. The curriculum covers key areas such as artificial intelligence, medical image processing, computational biology, and big data in biology. Students graduate with a well-rounded understanding of bioinformatics, ready to contribute to the field and propose innovative solutions to medical and biological challenges.

To support students throughout their studies, a variety of workshops and guidance will be available. These workshops are designed to help students become familiar with the program structure and different learning methods, ensuring they are well-prepared for their academic journey. As students advance to the final levels, they will have access to specialized workshops aimed at enhancing their proficiency in writing project reports, presentations, and self-marketing skills. These workshops are designed to equip students with the necessary tools and knowledge to effectively communicate their ideas. The program ensures that students are thoroughly prepared and confident in key areas crucial for their academic and professional growth.

3. Program Objectives

- 1. Develop proficiency in programming languages (such as Python and Matlab) to manipulate and analyze biological data effectively.
- 2. Gain a solid understanding of bioinformatics principles, including the retrieval, management, and analysis of biological data from various databases and formats.
- 3. Acquire data science skills to preprocess, clean, visualize, and analyze biological datasets using statistical and machine learning techniques.
- 4. Apply programming and data science knowledge to solve specific biological problems, such as gene expression analysis, sequence alignment, or network analysis.
- 5. Cultivate critical thinking and problem-solving abilities to extract meaningful insights and knowledge from complex biological datasets.
- 6. Develop a comprehensive understanding of genes, their structures, functions, and regulatory mechanisms, and apply bioinformatics techniques to study gene expression, variant analysis, and functional annotation.
- 7. Preparing graduates who are aware of the importance of self-learning to advance to their professional, scientific, and ethical lives.

4. Student Learning Outcomes

Through successfully completing the BSc in Bioinformatics program, students should be able to:

- 1. **Fundamental Knowledge:** Acquire a comprehensive understanding of the basic principles and concepts in biology, computer science, and mathematics, providing a strong foundation for bioinformatics studies.
- 2. **Computational Proficiency:** Develop a deep understanding of computer techniques and apply them effectively to diverse biological information, enabling the analysis and interpretation of complex datasets in bioinformatics.
- 3. Data Extraction and Analysis: Utilize a combination of computer science, biology, and statistics tools and techniques to extract valuable knowledge from complex biological and medical datasets, contributing to advancements in bioinformatics research and applications.
- 4. **Molecular Biology and Genetics:** Gain proficiency in the language and terminology of molecular biology, genetics, and bioinformatics, facilitating effective communication and collaboration with experts in these fields.
- 5. Awareness of Emerging Trends: Stay abreast of the latest advances and challenges in bioinformatics, fostering a comprehensive understanding of the evolving landscape of the field and the potential implications for research and industry.

- 6. **Practical Skills Demonstration:** Exhibit essential practical skills, including computer programming, artificial intelligence (AI), analytical reasoning, problem-solving, and critical reading of scientific literature, empowering students to effectively navigate and contribute to bioinformatics projects.
- 7. Research Project Management: Plan, execute, and communicate the findings of a small-scale research project both verbally and in writing. Demonstrate independent thinking, organizational skills, and the ability to apply research methodologies, showcasing competence in conducting scientific investigations within the realm of bioinformatics.
- 8. Ethical and Responsible Conduct: Uphold ethical principles in bioinformatics research and practice. Prioritize integrity, confidentiality, and privacy when handling sensitive biological data. Promote responsible data management and ethical considerations within the field of bioinformatics.

5. Academic Staff

Mohammed Fadhil Zamil | Ph.D. in Computer Science / Data Science | Lecturer Email: <u>mfadhil@uoitc.edu.iq</u> Mobile no.: 00964 07813226345

Sanaa Ahmed Kadhim Ph.D. in Computer Science/ Data Security Assistant Prof. Email: dr.sanaa.ahmed@uoitc.edu.iq Mobile no.: 00964 7718615142
Abdulkader Faris Kamal Ph.D. in Mathematics Lecturer Email: dr.abdulkader.faris@uoitc.edu.iq Mobile no.: 00964 7713232759
Hanaa Salim Ghanim Ph.D. in Arabic Language Lecturer Email: dr.hanaa.salim@uoitc.edu.iq Mobile no.: 00964 7744273573
Zainab Salim Jaafar MSc. in Microbiology Assistant Prof. Email: zainab.al-kadimy@uoitc.edu.iq Mobile no.: 00964 7712855556
Zinah Mohsin Arkah MSc. in Computer Science and Technology Lecturer Email: zinah2018@uoitc.edu.iq Mobile no.: 00964 7901464542 Jwan Kanaan Alwan MSc. in Information System Lecturer

Email: jwanism@uoitc.edu.iq

Mobile no.: 00964 7802355417

Shaimaa Khalid Moufak MSc. in Biotechnology Assistant Lecturer Email: shaimaa.khalid-bic@uoitc.edu.iq Mobile no.: 00964 7700870965
Usama Samir Mahmoud MSc. in Computer Science Assistant Lecturer Email: usama.s.mahmoud@uoitc.edu.iq Mobile no.: 00964 7707819415
Maysaa Ahmed Abdulkareem MSc. in Biotechnology Assistant Lecturer Email: maysaa.ahmed-bic@uoitc.edu.iq Mobile no.: 00964 7813203343
Nada Sabeeh Mohammed Msc. in Applied Mathematics Assistant Lecturer Email: nada.sabeeh@uoitc.edu.iq Mobile no.: 00964 7801634120
Ali Abdulqader Mahdi MSc. in Biotechnology Assistant Lecturer Email: ali.abdulkader-bic@uoitc.edu.iq Mobile no.: 00964 7829378152
Ahmed Oday Ezzat MSc. in Computer Science Assistant Lecturer Email: <u>ahmed.oday@uoitc.edu.iq</u> Mobile no.: 00964 7506321537
Farah Qahtan Kamil MSc. in thin films physics Assistant Lecturer Email: farah.qahtan-bic@uoitc.edu.iq Mobile no.: 00964 7756807939
Mohammad Qassin Jawad MScinformation technology Assistant Lecturer Email: Mohammad.Qassim 2002@uoitc.edu.iq Mobile no.: 00964 7724549996

6. Credits, Grading and GPA

Credits

The University of Information Technology and Communications follows the Bologna Process and uses the European Credit Transfer System (ECTS) credit system. The degree program consists of 240 ECTS, with 30 ECTS per semester. Each ECTS represents 25 hours of student workload, including both structured and unstructured tasks.

Grading

Before the evaluation, the results are divided into two subgroups: pass and fail. Therefore, the results are independent of the students who failed a course. The grading system is defined as follows:

GRADING SCHEME مخطط الدرجات							
Group	Grade	التقدير	Marks (%)	Definition			
	A - Excellent	امتياز	90 - 100	Outstanding Performance			
Success	B - Very Good	جيد جدا	80 - 89	Above average with some errors			
Group	C - Good	ختر	70 - 79	Sound work with notable errors			
(50 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings			
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria			
Fail	FX – Fail	راسب - قيد المعالجة	(45-49)	More work required but credit awarded			
Group (0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required			
Note:							
		•					

Number Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

Calculation of the Cumulative Grade Point Average (CGPA)

The CGPA is calculated by the summation of each module score multiplied by its ECTS, all are divided by the program total ECTS.

CGPA of a 4-year B.Sc. degree:

CGPA = [(1st ^module score x ECTS) + (2nd ^module score x ECTS) +] / 240

7. Curriculum/Modules

Code	Module	SSW L	USSWL	ECTS	Туре	Pre-request
BMI111	Biology	63	87	6.00	С	/
BMI112	Computer Programming I	63	87	6.00	В	/
BID111	Mathematics I	78	72	6.00	В	/
BID112	General Chemistry	78	72	6.00	В	/
BMI113	Computer Fundamentals	63	37	4.00	В	/
HRD111	Human Rights and Democracy	33	17	2.00	S	/

Semester 1 | 30 ECTS | 1 ECTS = 25 hrs

Semester 2 | 30 ECTS | 1 ECTS = 25 hrs

Code	Module	SSW L	USSWL	ECTS	Туре	Pre-request
ENG121	English I	33	17	2.00	S	/
BID121	Mathematics II	78	97	7.00	В	BID111
BMI121	Computer Programming II	63	87	6.00	В	BMI112
BID122	Introduction to bioinformatics	63	112	7.00	С	/
BID123	Biophysics	63	87	6.00	В	BID112
ARA121	Arabic	33	17	2.00	S	/

Semester 3 | 30 ECTS | 1 ECTS = 25 hrs

Code	Module	SSWL	USSWL	ECTS	Туре	Pre-request
BMI211	Object Oriented Programming	63	87	6.00	С	BMI121
BID211	Applied Bioinformatics	63	62	5.00	С	BID122
BMI212	Data Structures	63	87	6.00	С	BMI121
BID212	Fundamental of Organic Chemistry	63	37	4.00	С	BID112
BID213	Microbiology	63	37	4.00	В	BMI111
BMI213	Discrete Mathematics	33	42	3.00	В	BID121
BPC211	Baath Party Crimes	33	17	2.00	S	/

Semester 4 | 30 ECTS | 1 ECTS = 25 hrs

Cod	Э	Module	SSW	USSWL	ECTS	Туре	Pre-request	
-----	---	--------	-----	-------	------	------	-------------	--

		L				
ENG221	English II	33	17	2.00	s	ENG121
BID221	Bioinformatics Programming	63	87	6.00	С	BMI121
BID222	Fundamentals of Biochemistry	63	62	5.00	С	BID212
BID223	Biostatistics	63	87	6.00	В	BID121
BID224	Immunoinformatics	63	62	5.00	С	BMI111, BID211
BID225	Data analysis and visualization	63	87	6.00	С	BMI212, BMI211

Semester 5 | 30 ECTS | 1 ECTS = 25 hrs

Code	Module	SSW L	USSWL	ECTS	Туре	Pre-request
BID311	Bioinformatics Algorithms	64	61	5.00	С	BID221
BID312	Numerical Methods for Bioinformatics	64	61	5.00	В	BMI213
BID313	Genetics	64	61	5.00	С	BMI111
BID314	Database Management Systems	64	61	5.00	С	BID225
BMI311	Artificial Intelligence	64	61	5.00	С	BID223, BID225
BMI312	Image Processing	64	61	5.00	С	BID225

Semester 6 | 30 ECTS | 1 ECTS = 25 hrs

Code	Module	SSW L	USSWL	ECTS	Туре	Pre-request
BMI321	Web Development	64	61	5.00	В	BMI121
DSE101	Data Science Ethics	32	68	4.00	S	/
BID321	Pattern Discovery in Bioinformatics	64	86	6.00	С	BMI312, BID311
BID322	Molecular Biology and Genomics	64	61	5.00	С	BID313
BMI322	Machine Learning	64	61	5.00	С	BMI311
BMI323	Computer Vision	64	61	5.00	С	BMI312

Semester 7 | 30 ECTS | 1 ECTS = 25 hrs

Code	Module	SSW L	USSWL	ECTS	Туре	Pre-request
BID411	Software Engineering	64	61	5.00	В	BMI321
BID412	Artificial Neural Networks	64	61	5.00	С	BMI311
BID413	Human Diseases	64	61	5.00	С	BID322
BMI412	Data Mining	64	61	5.00	С	BID321
BMI411	Cloud Computing	64	61	5.00	Е	BMI321
BMI410	Project I	32	93	5.00	С	/

Semester 8 | 30 ECTS | 1 ECTS = 25 hrs

Code	Module	SSW L	USSWL	ECTS	Туре	Pre-request
BID421	Computer-Aided Drug Design	64	61	5.00	С	BID211, BID212
BID422	Convolutional Neural Network	64	61	5.00	С	BID412
BMI422	Information Security	64	61	5.00	С	BID121
BID423	Computational Biology	64	61	5.00	С	BID123, BID211
BMI421	Big Data Analytics	64	61	5.00	Е	BMI411
BMI420	Project II	32	93	5.00	С	BMI410

8. Contact

Program Manager: Mohammed Fadhil Zamil | Ph.D. in Computer science/Data science | Lecturer Email: <u>mfadhil@uoitc.edu.ig</u> Mobile no.: 00964 07813226345

Program Coordinator: Zinah Mohsin Arkah | MSc. in Computer Science and Technology | Lecturer Email: zinah2018@uoitc.edu.iq Mobile no.: 00964 7901464542